Neurotoxic unc-8 mutants encode constitutively active DEG/ENaC channels that are blocked by divalent cations
نویسندگان
چکیده
Ion channels of the DEG/ENaC family can induce neurodegeneration under conditions in which they become hyperactivated. The Caenorhabditis elegans DEG/ENaC channel MEC-4(d) encodes a mutant channel with a substitution in the pore domain that causes swelling and death of the six touch neurons in which it is expressed. Dominant mutations in the C. elegans DEG/ENaC channel subunit UNC-8 result in uncoordinated movement. Here we show that this unc-8 movement defect is correlated with the selective death of cholinergic motor neurons in the ventral nerve cord. Experiments in Xenopus laevis ooctyes confirm that these mutant proteins, UNC-8(G387E) and UNC-8(A586T), encode hyperactivated channels that are strongly inhibited by extracellular calcium and magnesium. Reduction of extracellular divalent cations exacerbates UNC-8(G387E) toxicity in oocytes. We suggest that inhibition by extracellular divalent cations limits UNC-8 toxicity and may contribute to the selective death of neurons that express UNC-8 in vivo.
منابع مشابه
unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion
Mechanically gated ion channels are important modulators of coordinated movement, yet little is known of their molecular properties. We report that C. elegans unc-8, originally identified by gain-of-function mutations that induce neuronal swelling and severe uncoordination, encodes a DEG/ENaC family member homologous to subunits of a candidate mechanically gated ion channel. unc-8 is expressed ...
متن کاملHigh Ca2+ permeability of a peptide-gated DEG/ENaC from Hydra
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are Na(+) channels that are blocked by the diuretic amiloride. In general, they are impermeable for Ca(2+) or have a very low permeability for Ca(2+). We describe here, however, that a DEG/ENaC from the cnidarian Hydra magnipapillata, the Hydra Na(+) channel (HyNaC), is highly permeable for Ca(2+) (P(Ca)/P(Na) = 3.8). HyNaC is directly gated by Hy...
متن کاملThe unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons.
Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As ...
متن کاملA glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans.
Mammalian neuronal DEG/ENaC channels known as ASICs (acid-sensing ion channels) mediate sensory perception and memory formation. ASICS are closed at rest and are gated by protons. Members of the DEG/ENaC family expressed in epithelial tissues are called ENaCs and mediate Na(+) transport across epithelia. ENaCs exhibit constitutive activity and strict Na(+) selectivity. We report here the analys...
متن کاملKnockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons.
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 142 شماره
صفحات -
تاریخ انتشار 2013